Musculoskeletal Hand Complications in Diabetes

Christos Karagiannopoulos, PT, PhD, ATC, CHT Assistant Professor, DeSales University Doctor of Physical Therapy Program

Review Aims

- Most common MSK conditions in "Diabetic Hand"
- Epidemiological characteristics
- Predisposing factors
- Pathogenesis
- Clinical presentation and diagnosis
- Treatment principles
- Role of physical therapists

Historical Perspective

Effects of Diabetes in the hand known since the 70-80's

- "diabetic hand syndrome"
- "diabetic cheiro-arthropathy"

Jung Y, Hohmann TC, Gerneth JA et al. Diabetic hand syndrome. Metabolism 1971; 20: 1008–15. Ceruso M, Lauri G, Bufalini C et al. Diabetic hand syndrome. J Hand Surg 1988; 13A:765-70.

- Rosenbloom AL. Limitation of finger joint mobility in diabetes mellitus. J Diabet Complications 1989; 3: 77-87. Poirier JL, Herisson C, Guillot Bet al. La cheiroarthropathie diabetique. Rev Rheum Mal Osteoartic 1989; 56: 511-7. Jennings AM, Miller PC, Ward JD. Hand abnormalities are associated with the complications of diabetes in type II diabetes. Diabetic Med 1989;6:43-7.
- Rosenbloom AL. Limitation of finger joint mobility in diabetes mellitus. J Diabet Complications 1989;3:77-87.

"Diabetic Hand" Predisposing Factors • Associated with:

- Advancing age
 Duration of diabetic symptoms
- 3. Levels of glycaemic control

tes Care, 2014; Rajendran et al., 2011; Ramchurn et al., 2009)

- 4. HbA1C index (LJM & DC)
- 5. Presence of neuropathies
- 6. Type I > II

et al., Diabe

7. Decreased physical activity (Type II)

	L.	pruci	mology	
MSK Dis	order	Gender	Prevalence With Diabetes	Prevalence w/out Diabetes
Limited Joint Mobility	(LIM)	F>M	8-58%	0-25%
Dupuytren's Contracture (DC)		F=M	16-42%	3-13%
Carpal Tunnel Syndrome (CTS)		F>M	12-30%	1-8%
Flexor Tenosynovitis/Trigger Finger (TF)		F>M	11-28%	1-2%
	Common M Disord	Aultiple ers	Prevalence	
	LIM &	TF	33%	
	CTS & TF		30%	
	DC & TF		13%	
	CTS & ADH C	ansulitis	17%	

- LJM recognized as a diabetic complication since 80's
- Slow progression over-time through 3 stages

Stage 1 Mild limitation: 1-2 joints IPs or MPs, Uni or Bil Stage 2 Moderate limitation: 2-3 joints IPs or MCPs Uni or Bil	
Stage 2 Moderate limitation: ≥ 3 joints IPs or MCPs Uni or Bil	
Stage 3 Severe limitation: Obvious hand deformity with multiple fingers	

(Rosenbloom AL, 1989)

Diabetic Cheiro-arthropathy

Clinical Exam

- Visual observation for flexion contracture deformity
 Passive extension restriction
- "Prayer sign": Inability of palms to come together
 "Table-top sign": Inability to get palm flat on table

Atypical presentation:

- Frequently bilateral Mostly at III & IV
- Gender No sig diff
- Milder contractures
- Respond to conservative mngt
- Lower function deficits

Prevalence associated:

- Disease duration
- Peripheral neuropathy Aging

(Rajendran et al., 2011; Al-Matubsi et al., 2011)

Dupuytren's Contracture

• Diagnosis: Clinical exam

Management:

- Early detection Optimizing glycaemic control
- Independent home program:
- Joint PROM/AROM Tendon gliding
 - Night splinting:
 - Low-load prolong stretch

Diabetic Carpal Tunnel Syndrome

- Etiology:
 - 1. Compression of Median N. (14%) Thickening transverse carpal ligament
 - 2. Diabetic neuropathy (30%)
 - 3. Both

• Presentation:

- Sensory & motor changes
- Median N. distribution
- Paresthesia & pain "Flick sign"
- Worse at night

TF Conservative Management

> Optimizing glycaemic control

- Same as non-diabetics:
 - Activity modification: avoid aggressive gripping • Exercises:
 - Tendon gliding
 - Long flexors flexibility
 - Hand-based Blocking orthosis

TF Medical Management

- Controversial when conservative tx fails
 - Identify the most cost-effective treatment
- Local injection
 - 70% success 8 years f/u Non diabetics
 - Lower efficacy in diabetics
 > 35% failure rates
 - > 35% failure rate

Immediate surgical release A1 pulley
 Considered most cost-effective tx for diabetics

(Castellanos et al., 2015; Luther et al., 2016; Kuczmarski et al., 2018)

Monitor Functional Disability

No specific hand-outcome tool for "Diabetic Hand"

- Measured with UE validated outcome measures:
 - Disability Arm Shoulder Hand (DASH)
 - Michigan Hand-Outcome Questionnaire (MHQ)
 SF-36: Quality of life and level of physical health
 - SI-So. Quality of the and level of physical heat

Sig Hand disability & lower quality of life

- Poly-neuropathy > Mono-neuropathy
- Combined with hand deformities

(Ovayolu et al., 2008; Yang CJ. et al., 2015; Yang CJ. et al., 2017)

Gradual Development of Disability

- May require > 2-year observation to capture sig change
- Attributed:
 Adaptation to gradual development of impairments
 - Impairments easily ignored or neglected

Hand Deformity Optimal Management

Early detection

- Frequent visual screening
- Optimized glycaemic control
 Monitoring HbA1C levels
- Promotion physical activity & exercise

romotion physical activity & exercis

(Boule et al., 2011; Ramchurn et al., 2009; Thomas et al., 2007)

Exercise Effect PA & weight loss can lower risk for Type II diabetes Resistance & aerobic exercise can sig. improve diabetic management Exercise and Type 2 Diabetes The American College of Sports Medicine and the American Diabetes Association: joint position statement

ation: joint position statement rame, no eccor Son, no wayseers² Son, no wayseers² Resonance in a second state, no scend² Supartices and statement of the statement o

Colberg et al., Diabetes Care, 2010

<section-header><section-header><section-header><list-item><list-item><section-header>

Cinical Implications

Clinicians should take pro-active roles:

- Screen for hand complications
- Early recognition of hand deformity & neuropathy
- Educate for optimal glycaemic control
- Recognize & promote effects of exercise
- Monitor long-term function
 - Hand-grip strength strong predictor of function

